
Distest Documentation
Release 1.0

Jake Cover, Joseph Knight

Apr 10, 2020

Getting Started

1 Quickstart 3
1.1 Installation . 3
1.2 Usage . 3

2 Example Test Suite 5

3 Main Functions 9

4 Interface 11

5 Enumerations 13

6 Bot 15

7 Collector 19

8 Exceptions 21

9 Contributing 23

10 Meta Documentation Pages 25

Python Module Index 27

Index 29

i

ii

Distest Documentation, Release 1.0

Distest makes it easy to write application tests for discord bots.

Distest uses a secondary bot to send commands to your bot and ensure that it responds as expected.

See the interface reference for a list of assertions this library is capable of.

Getting Started 1

Distest Documentation, Release 1.0

2 Getting Started

CHAPTER 1

Quickstart

1.1 Installation

1. Install the library with pip:

$ pip install distest

2. Distest works by using a second bot (the ‘tester’) to assert that your bot (the ‘target’) reacts to events appro-
priately. This means you will need to create a second bot account through the Discord Developer’s Portal and
obtain the authorization token. You also have to invite the tester to your discord guild.

3. Refer to the Example Test Suite for the syntax/function calls necessary to build your suite.

1.2 Usage

The tests can be run in one of two modes: interactive and command-line. In interactive mode, the bot will wait for you
to initiate tests manually. In command-line mode, the bot will join a designated channel, run all designated tests, and
exit with a code of 0 if all tests were successful and any other number if the one or more tests failed. This allows for
automating your test suite, allowing you to implement Continuous Integration on your Discord bot!

No matter how you run your tester, the file must contain:

1. A call to run_dtest_bot, which will handle all command line arguments and run the tester in the correct
mode

2. A TestCollector, which will let the bot find and run the you specify

3. One or more Test, which should be decorated with the TestCollector, and are the actual tests that are
run.

Note: The error codes will currently be 0 on success or 1 on failure, but we plan to implement meaningful error codes

3

https://www.discordapp.com/developers/applications

Distest Documentation, Release 1.0

1.2.1 Interactive Mode

1. Run the bot by running your test suite module directly (called example_tester.py here):

$ python example_tester.py TARGET_NAME TESTER_TOKEN

2. Go to the channel you want to run your tests in and call the bot using the ::run command. You can either
designate specific tests to run by name or use ::run all

See also:

::help command for more commands/options.

1.2.2 Command-Line Mode

For command-line you have to designate the ID of the channel you want to run tests in (preceded by the -c flag). You
must also designate which tests to run (with the -r flag). Your command should look something like this:

$ python example_tester.py TARGET_NAME TESTER_TOKEN -c CHANNEL_ID -r all

The program will print test names to the console as it runs them, and then exit.

See also:

readme.md on GitHub, which contains a more in-depth look at the command properties

4 Chapter 1. Quickstart

CHAPTER 2

Example Test Suite

This is the example_tester.py file found in the root directory. It contains tests for every assertion in Interface.
This suite is also used to test our library, in conjunction with the example_target.py. The easiest way to get
started is to adapt this suite of tests so it’s specific to your bot, then run this module with

$ python example_tester.py ${TARGET_NAME} ${TESTER_TOKEN}

where TARGET_NAME is the display name of your discord bot, and TESTER_TOKEN is the auth token for your testing
bot.

1 """
2 A functional demo of all possible test cases. This is the format you will want to use

→˓with your testing bot.
3

4 Run with:
5 python example_tests.py TARGET_NAME TESTER_TOKEN
6 """
7 import asyncio
8 import sys
9 from distest import TestCollector

10 from distest import run_interactive_bot, run_dtest_bot
11 from discord import Embed
12

13 # The tests themselves
14

15 test_collector = TestCollector()
16 created_channel = None
17

18 @test_collector()
19 async def test_ping(interface):
20 await interface.assert_reply_contains("ping?", "pong!")
21

22

23 @test_collector()
24 async def test_delayed_reply(interface):

(continues on next page)

5

Distest Documentation, Release 1.0

(continued from previous page)

25 message = await interface.send_message(
26 "Say some stuff, but at 4 seconds, say 'yeet'"
27)
28 await interface.get_delayed_reply(5, interface.assert_message_equals, "yeet")
29

30

31 @test_collector()
32 async def test_reaction(interface):
33 await interface.assert_reaction_equals("React with \u2714 please!", u"\u2714")
34

35

36 @test_collector()
37 async def test_reply_equals(interface):
38 await interface.assert_reply_equals("Please say 'epic!'", "epic!")
39

40

41 @test_collector()
42 async def test_channel_create(interface):
43 await interface.send_message("Create a tc called yeet")
44 created_channel = await interface.assert_guild_channel_created("yeet")
45

46

47 # @test_collector
48 # async def test_pin_in_channel(interface):
49 # await interface.send_message("Pin 'this is cool' in yeet")
50 # await interface.assert_guild_channel_pin_content_equals(created_channel)
51

52

53 @test_collector()
54 async def test_channel_delete(interface):
55 await interface.send_message("Delete that TC bro!")
56 await interface.assert_guild_channel_deleted("yeet")
57

58

59 @test_collector()
60 async def test_silence(interface):
61 await interface.send_message("Shhhhh...")
62 await interface.ensure_silence()
63

64

65 @test_collector()
66 async def test_reply_contains(interface):
67 await interface.assert_reply_contains(
68 "Say something containing 'gamer' please!", "gamer"
69)
70

71

72 @test_collector()
73 async def test_reply_matches(interface):
74 await interface.assert_reply_matches(
75 "Say something matching the regex `[0-9]{1,3}`", r"[0-9]{1,3}"
76)
77

78

79 @test_collector()
80 async def test_ask_human(interface):
81 await interface.ask_human("Click the Check!")

(continues on next page)

6 Chapter 2. Example Test Suite

Distest Documentation, Release 1.0

(continued from previous page)

82

83

84 @test_collector()
85 async def test_embed_matches(interface):
86 embed = (
87 Embed(
88 title="This is a test!",
89 description="Descriptive",
90 url="http://www.example.com",
91 color=0x00FFCC,
92)
93 .set_author(name="Author")
94 .set_thumbnail(
95 url="https://upload.wikimedia.org/wikipedia/commons/4/40/Test_Example_

→˓%28cropped%29.jpg"
96)
97 .set_image(
98 url="https://upload.wikimedia.org/wikipedia/commons/4/40/Test_Example_

→˓%28cropped%29.jpg"
99)

100)
101

102 # This image is in WikiMedia Public Domain
103 await interface.assert_reply_embed_equals("Test the Embed!", embed)
104

105

106 @test_collector()
107 async def test_embed_part_matches(interface):
108 embed = Embed(title="Testing Title.", description="Wrong Description")
109 await interface.assert_reply_embed_equals(
110 "Test the Part Embed!", embed, attributes_to_check=["title"]
111)
112

113

114 @test_collector()
115 async def test_reply_has_image(interface):
116 await interface.assert_reply_has_image("Post something with an image!")
117

118

119 @test_collector()
120 async def test_reply_on_edit(interface):
121 message = await interface.send_message("Say 'Yeah, that cool!'")
122 await asyncio.sleep(1)
123 await interface.edit_message(message, "Say 'Yeah, that is cool!'")
124 await interface.assert_message_contains(message, "Yeah, that is cool!")
125

126

127 @test_collector()
128 async def test_send_message_in_channel(interface):
129 message = await interface.send_message("Say stuff in another channel")
130 await asyncio.sleep(1)
131 await interface.wait_for_message_in_channel("here is a message in another channel

→˓", 694397509958893640)
132

133

134 # Actually run the bot
135

(continues on next page)

7

Distest Documentation, Release 1.0

(continued from previous page)

136 if __name__ == "__main__":
137 run_dtest_bot(sys.argv, test_collector)

8 Chapter 2. Example Test Suite

CHAPTER 3

Main Functions

distest.run_dtest_bot(sysargs, test_collector, timeout=5)
This is the function you will call in your test suite’s if __name__ == "__main__": statement to get the
bot started.

Parameters

• sysargs (list) – The list returned by sys.argv, this function parses it and will handle
errors in format

• test_collector (TestCollector) – The Collector that has been used to decorate
the tests

• timeout (int) – An optional parameter to override the amount of time to wait for re-
sponses before failing tests. Defaults to 5 seconds.

distest.run_command_line_bot(target, token, tests, channel_id, stats, collector, timeout)
Start the bot in command-line mode. The program will exit 1 if any of the tests failed.

Relies on run_dtest_bot() to parse the command line arguments and pass them here. Not really meant to
be called by the user.

Parameters

• target (str) – The display name of the bot we are testing.

• token (str) – The tester’s token, used to log in.

• tests (str) – List of tests to run.

• channel_id (int) – The ID of the channel in which to run the tests.

• stats (bool) – Determines whether or not to display stats after run.

• collector (TestCollector) – The collector that gathered our tests.

• timeout (int) – The amount of time to wait for responses before failing tests.

distest.run_interactive_bot(target_name, token, test_collector, timeout=5)
Run the bot in interactive mode.

9

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Distest Documentation, Release 1.0

Relies on run_dtest_bot() to parse the command line arguments and pass them here. Not really meant to
be called by the user.

Parameters

• target_name (str) – The display name of the bot we are testing.

• token (str) – The tester’s token, used to log in.

• test_collector (TestCollector) – The collector that gathered our tests.

• timeout (int) – The amount of time to wait for responses before failing tests.

10 Chapter 3. Main Functions

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CHAPTER 4

Interface

This is the most important class in the library for you, as it contains all the assertions and tools you need to interface
with the library. Generally broken down into a few overall types:

• Message (i.e. assert_message_contains): Does not send it’s own message, so it require a Message to
be passed in.

• Reply (i.e. assert_reply_contains): Sends a message containing the text in contents and analyzes messages sent after that.

– Use get_delayed_reply to wait an amount of time before checking for a reply

• Embed (i.e. assert_embed_equals): Sends a message then checks the embed of the response against a
list of attributes

• Other Tests (i.e. ask_human): Some tests do weird things and don’t have a clear category.

• Interface Functions (i.e. connect, send_message): Help other tests but also can be useful in making
custom tests out of the other tests.

11

https://discordpy.readthedocs.io/en/latest/api.html#discord.Message

Distest Documentation, Release 1.0

12 Chapter 4. Interface

CHAPTER 5

Enumerations

The following enumeration (subclass of enum.Enum) is used to indicate the result of a run test.

class TestResult
Specifies the result of a test.

UNRUN
Test has not been run in this session

SUCCESS
Test succeeded

FAILED
Test has failed.

13

https://docs.python.org/3/library/enum.html#enum.Enum

Distest Documentation, Release 1.0

14 Chapter 5. Enumerations

CHAPTER 6

Bot

Contains the discord clients used to run tests.

DiscordBot contains the logic for running tests and finding the target bot

DiscordInteractiveInterface is a subclass of DiscordBot and contains the logic to handle commands
sent from discord to run tests, display stats, and more

DiscordCliInterface is a subclass of DiscordInteractiveInterface and simply contains logic to
start the bot when it wakes up

class distest.bot.DiscordBot(target_id)
Discord bot used to run tests. This class by itself does not provide any useful methods for human inter-
action, and is just used as a superclass of the two interfaces, DiscordInteractiveInterface and
DiscordCliInterface

Parameters target_id (str) – The name of the target bot, used to ensure that the target user is
actually present in the server. Good for checking for typos or other simple mistakes.

run_test(test: distest.TestInterface.Test, channel: discord.channel.TextChannel, stop_error=False)
→ distest.TestInterface.TestResult

Run a single test in a given channel.

Updates the test with the result and returns it

Parameters

• test (Test) – The Test that is to be run

• channel (discord.TextChannel) – The

• stop_error – Weather or not to stop the program on error. Not currently in use.

Returns Result of the test

Return type TestResult

15

https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel

Distest Documentation, Release 1.0

class distest.bot.DiscordInteractiveInterface(target_id, collector: dis-
test.collector.TestCollector, timeout=5)

A variant of the discord bot which commands sent in discord to allow a human to run the tests manually.

Does NOT support CLI arguments

Parameters

• target_id (str) – The name of the bot to target (Username, no discriminator)

• collector (TestCollector) – The instance of Test Collector that contains the tests
to run

• timeout (int) – The amount of time to wait for responses before failing tests.

on_message(message: discord.message.Message)
Handle an incoming message, see discord.event.on_message() for event reference.

Parse a message, can ignore it or parse the message as a command and run some tests or do one of the
alternate functions (stats, list, or help)

Parameters message (discord.Message) – The message being recieved, passed by dis-
cord.py

on_ready()
Report when the bot is ready for use and report the available tests to the console

run_tests(channel: discord.channel.TextChannel, name: str)
Helper function for choosing and running an appropriate suite of tests Makes sure only tests that still need
to be run are run, also prints to the console when a test is run

Parameters

• channel (discord.TextChannel) – The channel in which to run the tests

• name (str) – Selector string used to determine what category of test to run

class distest.bot.DiscordCliInterface(target_id, collector, test, channel_id, stats, timeout)
A variant of the discord bot which is designed to be run off command line arguments.

Parameters

• target_id (str) – The name of the bot to target (Username, no discriminator)

• collector (TestCollector) – The instance of Test Collector that contains the tests
to run

• test (str) – The name of the test option (all, specific test, etc)

• channel_id (int) – The ID of the channel to run the bot in

• stats (bool) – If true, run in hstats mode.

on_ready()
Run all the tests sequentially when the bot becomes awake and exit when the tests finish. The CLI should
run all by itself without prompting, and this allows it to behave that way.

run(token)→ int
Override of the default run() that returns failure state after completion. Allows the failure to cascade back
up until it is processed into an exit code by run_command_line_bot()

Parameters token (str) – The tester bot token

Returns Returns 1 if the any test failed, otherwise returns zero.

16 Chapter 6. Bot

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Distest Documentation, Release 1.0

Return type int

17

https://docs.python.org/3/library/functions.html#int

Distest Documentation, Release 1.0

18 Chapter 6. Bot

CHAPTER 7

Collector

The TestCollector Class and some supporting code.

Each test function in the tester bot should be decorated with an instance of TestCollector(), and must have a unique
name. The TestCollector() is then passed onto the bot, which runs the tests.

class distest.collector.TestCollector
Used to group tests and pass them around all at once.

Tests can be either added with add or by using @TestCollector to decorate the function, as seen in the
sample code below. Is very similar in function to Command from discord.py, which you might already be
familiar with.

1 await interface.assert_reply_equals("Please say 'epic!'", "epic!")
2

3

4 @test_collector()
5 async def test_channel_create(interface):
6 await interface.send_message("Create a tc called yeet")
7 created_channel = await interface.assert_guild_channel_created("yeet")
8

9

10 # @test_collector
11 # async def test_pin_in_channel(interface):
12 # await interface.send_message("Pin 'this is cool' in yeet")
13 # await interface.assert_guild_channel_pin_content_equals(created_channel)

add(function, name=None, needs_human=False)
Adds a test function to the group, if one with that name is not already present

Parameters

• function (func) – The function to add

19

https://discordpy.readthedocs.io/en/latest/ext/commands/api.html#discord.ext.commands.Command

Distest Documentation, Release 1.0

• name (str) – The name of the function to add, defaults to the function name but
can be overridden with the provided name just like with discord.ext.commands.
Command. See sample code above.

• needs_human (bool) – Optional boolean, true if the test requires a human interaction

find_by_name(name)
Return the test with the given name, return None if it does not exist.

Parameters name (str) – The name of the test

20 Chapter 7. Collector

https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/ext/commands/api.html#discord.ext.commands.Command
https://discordpy.readthedocs.io/en/latest/ext/commands/api.html#discord.ext.commands.Command
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 8

Exceptions

Stores all the Exceptions that can be called during testing.

Allows for a more through understanding of what went wrong. Not all of these are currently in use.

class distest.exceptions.TestRequirementFailure
Base class for the special errors that are raised when an expectation is not met during testing

class distest.exceptions.TestRequirementFailure
Base class for the special errors that are raised when an expectation is not met during testing

class distest.exceptions.TestRequirementFailure
Base class for the special errors that are raised when an expectation is not met during testing

21

Distest Documentation, Release 1.0

22 Chapter 8. Exceptions

CHAPTER 9

Contributing

23

Distest Documentation, Release 1.0

24 Chapter 9. Contributing

CHAPTER 10

Meta Documentation Pages

• genindex

• modindex

• search

25

Distest Documentation, Release 1.0

26 Chapter 10. Meta Documentation Pages

Python Module Index

d
distest, 9
distest.bot, 15
distest.collector, 19
distest.exceptions, 21

27

Distest Documentation, Release 1.0

28 Python Module Index

Index

A
add() (distest.collector.TestCollector method), 19

D
DiscordBot (class in distest.bot), 15
DiscordCliInterface (class in distest.bot), 16
DiscordInteractiveInterface (class in dis-

test.bot), 15
distest (module), 9
distest.bot (module), 15
distest.collector (module), 19
distest.exceptions (module), 21

F
FAILED (TestResult attribute), 13
find_by_name() (distest.collector.TestCollector

method), 20

O
on_message() (distest.bot.DiscordInteractiveInterface

method), 16
on_ready() (distest.bot.DiscordCliInterface method),

16
on_ready() (distest.bot.DiscordInteractiveInterface

method), 16

R
run() (distest.bot.DiscordCliInterface method), 16
run_command_line_bot() (in module distest), 9
run_dtest_bot() (in module distest), 9
run_interactive_bot() (in module distest), 9
run_test() (distest.bot.DiscordBot method), 15
run_tests() (distest.bot.DiscordInteractiveInterface

method), 16

S
SUCCESS (TestResult attribute), 13

T
TestCollector (class in distest.collector), 19
TestRequirementFailure (class in dis-

test.exceptions), 21
TestResult (built-in class), 13

U
UNRUN (TestResult attribute), 13

29

	Quickstart
	Installation
	Usage

	Example Test Suite
	Main Functions
	Interface
	Enumerations
	Bot
	Collector
	Exceptions
	Contributing
	Meta Documentation Pages
	Python Module Index
	Index

